1 Simplify:

$$\mathbf{a} \quad v^3 \times v^5$$

b
$$3x^2 \times 2x^5$$

a
$$y^3 \times y^5$$
 b $3x^2 \times 2x^5$ **c** $(4x^2)^3 \div 2x^5$

d
$$4b^2 \times 3b^3 \times b^4$$

2 Expand and simplify if possible:

a
$$(x+3)(x-5)$$

b
$$(2x-7)(3x+1)$$

b
$$(2x-7)(3x+1)$$
 c $(2x+5)(3x-y+2)$

3 Expand and simplify if possible:

a
$$x(x+4)(x-1)$$

b
$$(x+2)(x-3)(x+7)$$

b
$$(x+2)(x-3)(x+7)$$
 c $(2x+3)(x-2)(3x-1)$

4 Expand the brackets:

a
$$3(5y + 4)$$

b
$$5x^2(3-5x+2x^2)$$

a
$$3(5y + 4)$$
 b $5x^2(3 - 5x + 2x^2)$ **c** $5x(2x + 3) - 2x(1 - 3x)$ **d** $3x^2(1 + 3x) - 2x(3x - 2)$

d
$$3x^2(1+3x)-2x(3x-2)$$

5 Factorise these expressions completely:

a
$$3x^2 + 4x$$

b
$$4v^2 + 10v$$

b
$$4y^2 + 10y$$
 c $x^2 + xy + xy^2$

d
$$8xv^2 + 10x^2v$$

6 Factorise:

$$a x^2 + 3x + 2$$

b
$$3x^2 + 6x$$

c
$$x^2 - 2x - 35$$

d
$$2x^2 - x - 3$$

a
$$x^2 + 3x + 2$$
 b $3x^2 + 6x$ **c** $x^2 - 2x - 35$ **d** $2x^2 - x - 3$ **e** $5x^2 - 13x - 6$ **f** $6 - 5x - x^2$

$$\mathbf{f} = 6 - 5x - x^2$$

7 Factorise:

a
$$2x^3 + 6x$$

b
$$x^3 - 36x$$

a
$$2x^3 + 6x$$
 b $x^3 - 36x$ **c** $2x^3 + 7x^2 - 15x$

8 Simplify:

a
$$9x^3 \div 3x^{-3}$$
 b $(4^{\frac{3}{2}})^{\frac{1}{3}}$

b
$$(4^{\frac{3}{2}})^{\frac{1}{3}}$$

c
$$3x^{-2} \times 2x^4$$
 d $3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$

d
$$3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$$

Evaluate, without using your calculator:

$$a \left(\frac{8}{27}\right)^{\frac{2}{3}}$$

b
$$\left(\frac{225}{289}\right)^{\frac{3}{2}}$$

10 Simplify, without using your calculator:

a
$$\frac{3}{\sqrt{63}}$$

b
$$\sqrt{20} + 2\sqrt{45} - \sqrt{80}$$

- 11 a Find the value of $35x^2 + 2x 48$ when x = 25.
 - b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.
- 12 Expand and simplify if possible, without using your calculator:

a
$$\sqrt{2}(3+\sqrt{5})$$

b
$$(2-\sqrt{5})(5+\sqrt{3})$$
 c $(6-\sqrt{2})(4-\sqrt{7})$

c
$$(6-\sqrt{2})(4-\sqrt{7})$$

13 Rationalise the denominator and simplify:

$$a \frac{1}{\sqrt{3}}$$

b
$$\frac{1}{\sqrt{2}-1}$$

$$c \frac{3}{\sqrt{3}-2}$$

a
$$\frac{1}{\sqrt{3}}$$
 b $\frac{1}{\sqrt{2}-1}$ **c** $\frac{3}{\sqrt{3}-2}$ **d** $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$ **e** $\frac{1}{(2+\sqrt{3})^2}$ **f** $\frac{1}{(4-\sqrt{7})^2}$

$$e \frac{1}{(2+\sqrt{3})^2}$$

$$f = \frac{1}{(4-\sqrt{7})^2}$$

14 Do not use your calculator for this question.

- a Given that $x^3 x^2 17x 15 = (x + 3)(x^2 + bx + c)$, where b and c are constants, work out the values of b and c.
- **b** Hence, fully factorise $x^3 x^2 17x 15$.
- (E) 15 Given that $y = \frac{1}{64}x^3$, express each of the following in the form kx^n , where k and n are constants.

a $v^{\frac{1}{3}}$ (1 mark)

b $4v^{-1}$ (1 mark)

- 16 Show that $\frac{5}{\sqrt{75} \sqrt{50}}$ can be written in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers. (5 marks)
- 17 Expand and simplify $(\sqrt{11} 5)(5 \sqrt{11})$, without using your calculator. (2 marks)
- **18** Factorise completely $x 64x^3$. (3 marks)
- 19 Express 27^{2x+1} in the form 3^y , stating y in terms of x. (2 marks)
- E/P 20 Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{2}}$. Give your answer in the form $a\sqrt{b}$, where a and b are integers. (4 marks)
 - (P) 21 Do not use your calculator for this question.

A rectangle has a length of $(1 + \sqrt{3})$ cm and area of $\sqrt{12}$ cm².

Calculate the width of the rectangle in cm.

Express your answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.

- 22 Show that $\frac{(2-\sqrt{x})^2}{\sqrt{x}}$ can be written as $4x^{-\frac{1}{2}} 4 + x^{\frac{1}{2}}$. (2 marks)
- (E/P) 23 Given that $243\sqrt{3} = 3^a$, find the value of a. (3 marks)
- **E/P** 24 Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$,

write down the value of a and the value of b. (2 marks)

Challenge

- a Simplify $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b})$.
- **b** Hence show that $\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{24} + \sqrt{25}} = 4$